

US Ice Drilling Program

Strategic Planning for Science and Drilling Technologies

Today's Focus: The "Practices"

Processes of building and using Core Ideas to make sense of the natural and designed world.

Key Messages

- Integration of engineering concepts and processes
- Parallel practices; different outcomes
- Emphasis on how scientists and engineers work together and communicate results

Our Question:

How can we as educators
effectively help students to
distinguish these practices?

interactions between scientist and engineers

A key question being asked by scientists is,

"How can we predict future climate changes, and their impacts,

to empower decisions today "

What we know:

Earth's system of interacting systems influences long-term climate patterns

What we need to know: data from the past.

We started by looking at strategies others have used...

Sediment core record showing glacial cycles

The moving atmosphere carries environmental evidence to the polar ice sheets

north

south

The evidence becomes archived in ice sheets

Falling Snow

Surface

Firn (old snow)

Firn-to-ice transition 60 to 110 m

Ice with bubbles of atmospheric gas

Isotopes

Pollutants

Sea salts

Dust

Radioactive fallout

CO2 CH4

> Isotopes Chemistry

Volcanic Tephra

High accumulation layers yield high resolution ice core data at WAIS Divide, Antarctica

Drilled to 3400 m deep

(more than two miles)

Recent Core From WAIS

Electrical Conductivity

Precisely Dated Annual resolution to 30,000 years

Depth (m)

CO₂ and temp, rising together 18 K yrs ago

Age (1000's years)

Scientist: A really interesting period-I need more ice!

More ice core data is needed from this really funky event

Scientist: Can we drill another core?

Engineer: Sure, but it took 4 seasons and \$\$ to get to that depth!

Engineer: What about drilling out the side of the hole instead?

We can block the hole to deviate out the side. That's worked before-

Scientist: No, I need to measure stuff down the entire borehole length

Instruments will need to get past the 18K event depth...

Sample Borehole "Logging" Tools

Engineer: So what about going out the uphill side of the borehole so gravity pulling the tools into deviations is not a factor?

Tools with still pass by the replicate hole, - Yikes, this has never been done before!

Science Goal: cores parallel to the main hole to duplicate results from depths of great interest-

Engineer: That's going to require a whole new kind of drill !!

Audience:
What kind of questions would
you want to ask to define the
drill the scientists need?

DISC Drill Modifications Done

Existing Components:

New Components

Diagram Brainstorming Deviation

- •Actuators Force Cutters to High-side of Parent Hole.
- Direction and Magnitude of Force via
 Surface Command
- •Real-time Adjustments On-Board Controller
- Ascend/Descend to Deviate Over~25m.

Prototype Testing Accomplished

Actuator

Broaching Head

2011-12 Field Test: Problems identified

Summer 2012 - evaluation and redesign

2012–13 season A Huge Success!

5 deviations were completed from at four different depths

- All goals were met
- 284m of core were recovered
- First time an ice borehole has been deviated on the high side!

Morris for AGU 2013

The 18k event was recovered not once, but twice: Stay tuned for analysis of the event!

Audience Question:

What processes or actions did you observe the scientist and/or engineer using?

NGSS Practices-how'd we do?

- 1. Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Activity: Drilling Back Through Time

1) Prepare your students

2) View the movie

www.youtube.com/user/ USIceDrillingVideos

3) Check off each step as you hear it modeled by a scientist or engineer

Resources

Activity:

 http://www.climate-expeditions.org/educators/ Drilling-Back-Through-Time.pdf

US Ice Drilling Program

- www.icedrill.org
- www.climate-expeditions.org
- Linda.m.morris@dartmouth.edu

NSTA Webinar (will be archived)

February 27, 2014:
 Jihong Cole-Dai, Jay Johnson, Linda Morris
 "Polar Science and Engineering"